
General announcements



A vibration is the periodic back and forth motion of a medium

Examples?
Periodic motion is motion that repeats itself in equal intervals of time 

Examples?

Simple harmonic motion is motion in which an object oscillates around an 
equilibrium position due to a restoring force that is proportional to minus 
displacement

When have we seen this before?

How often a motion or vibration happens (# cycles/time) is called its frequency 
(𝜈), measured in Hertz (1 Hz = 1 vibration / second)

Vibrations and terminology

Guitar string, pendulum, metronome, spring/mass system

Spring-mass systems, a pendulum

All of the above, plus: orbits, rotations at constant angular velocity 
(e.g. spinning CD or record), delivery of a paper each morning, etc.



Simple Harmonic Motion
A vibrating body executes SIMPLE HARMONIC MOTION if the restoring 
force driving the body back toward its equilibrium position is proportional to the
displacement x of the body from its equilibrium position. 

The classic example is a mass attached to an 
ideal spring. Pull the spring away from 
equilibrium and release it, what happens?

The spring exerts a force back towards 
equilibrium, accelerating it towards the center.

When it reaches equilibrium, though, the mass 
is moving (has inertia and KE!) and continues 
past…now the force pulls back towards 
equilibrium, accelerating it again but this time 
slowing it down.

How can we describe or represent this type of periodic motion?
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Vibratory motion visualized

courtesy of Richard White



What did we see from that?
• 1.) The PROJECTION of a point on a circle moving with constant angular 

velocity     follows the same path as a mass attached to an ideal hanging spring 
as the spring oscillates up and down.  And:

• 2.) If you track the oscillation in time, it traces out a sinusoidal path.

ω

Both of these observations fall out from 
the math if we start with Newton’s Second 
Law applied to a mass m attached to an ideal 
spring oscillating over a frictionless, 
horizontal surface.
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That analysis follows:



Pulling the –kx to the right side and dividing by m yields the relationship:

spring will be                          (Hooke’s Law), Newton Second Law suggests:

Keeping the sign of the acceleration 
embedded (it will be either positive or 
negative, depending upon the point in 
time, so we’ll leave it implicit), and 
noting that the spring force in the x-
direction on a mass attached to the

Fspring = − kx( ) î
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This is the characteristic equation of SIMPLE HARMONIC MOTION.



This relationship:
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essentially asks us to find a function x such that when 
you take its second derivative and add it to a constant
times itself, the sum will always add to zero.
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The function that does this is either a cosine or a sine (I usually use a sine, 
but your book for no particularly good reason uses a cosine, so we’ll use that).  

There are restrictions on the cosine function we need.  In fact, we want 
the most general form possible.  Specifically:

1.) We need the cosine’s angle to be time dependent, so instead of using an angle   
we will use a constant times t, where the constants units have to be 
radians/second.  As we have already run into a variable with those units (   ), we 
will use that symbol.  (Interesting note: If the angular velocity of the rotating point 
on the circle shown in the first slide had been    , the time-constant for the 
vibratory motion’s cosine function would have been that same number    .)
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3.) We need to be able to shift the axis by 
some phase shift amount   , essentially 
starting the clock (i.e., setting t = 0) when 
the body is at any chosen x-coordinate.

2.) We need the ability to start the clock 
when we want.  A simple cosine function 
sets the position to be at a positive 
maximum at t = 0 (see sketch).
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at t=0, x-coord. shifted
4.) Lastly, we need to be able to 
accommodate motion whose maximum 
displacement is other than one.

The function that does all of this for us is:

x = Acos ωt + φ( )

new axis



So back to the problem at hand.  Does
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The only way to tell is to try it out:

x = Acos ωt + φ( )

dx
dt

=
d Acos ωt + φ( )( )

dt
    = −ωAsin ωt + φ( )

This, by the way, is the velocity function.  And as a sine function can never be 
larger than one, this means the magnitude of the maximum velocity for this 
oscillatory motion will be:

vmax = ωA

This will happen when the force is completely spent, or at equilibrium.
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Continuing:

d2x
dt2 =

d −ωAsin ωt + φ( )( )
dt

      = −ω2Acos ωt + φ( )
Another side point:  This means the magnitude of the maximum acceleration, 
which happens at the extremes where the spring force is maximum, will be:

amax = ω2A

Putting everything together:
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In other words, the differential equation
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x = Acos ωt + φ( )
is satisfied by the position function
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as long as the angular frequency     satisfies:ω

Big Note:  Notice that in concluding that                   , we are saying that the 
square root of the constant that sits in front of the position term in the Newton’s 
Second Law equation is equal to the oscillations angular frequency!  Put a little 
differently, if you can get any N.S.L. evaluation into the form:

acceleration + constant( ) position( ) = 0
you will know the oscillation is simple harmonic in nature AND you will know that 
the angular frequency of the system will be                           .  ω = constant( )12
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Minor point:  So what is the angular frequency     
really doing for us?  It is simply another way to 
identify how quickly the system is oscillating 
back and forth.  But instead of telling us the 
frequency    in cycles per second, it is telling us 
how many radians being swept through per cycle.  
Noting that there are      radians per cycle, the 
relationship between frequency and angular 
frequency is:

2π

ω = 2πν
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And as the frequency in cycles per second is the inverse of the number of 
seconds required to traverse one cycle (or the period T in seconds per cycle), we 
can also write:

ν

T = 1
ν

In short, if we can derive an expression for     for a system, we also know    and T.  ω ν



Summing up the important equations:
• From all this we found:

– The position function for an object undergoing simple harmonic motion is a 
sine/cosine function in the form of 𝑥 = 𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝜙 where A = amplitude of 
oscillation (m), 𝜔 = angular frequency (rad/sec), and 𝜙 = phase shift to get the 
amplitude we want at t = 0

– The maximum velocity is found at equilibrium (when x = 0) and can be found 
by 𝑣!"# = 𝜔𝐴, and the maximum acceleration is found at the ends (max 
amplitude) and can be found by 𝑎!"# = 𝜔$𝐴

– The angular frequency 𝜔 can be related to the frequency 𝜐 by the expression 
𝜔 = 2𝜋𝜐, as well as to the physical measurements of the system (k and m) by 
𝜔 = 𝑘/𝑚

– And finally, the period T in seconds can be found by 𝑇 = %
&


